Notes

Solubility

Esters of Lactyllactic Acid¹

By C. E. Rehberg and Marion B. Dixon

The process of making esters of lactyllactic acid from lactide was discovered by Claborn,² who de-scribed the methyl, ethyl and butyl esters. Lactyllactates can also be made by the self-alcoholysis of esters of monomeric lactic acid.3

tate usually being 5 to 20%, depending on the ratio of alcohol to lactic acid used in the esterification.

Table I shows the esters studied and the physical properties determined

The boiling points shown were read from lines on a Cox chart. This chart was notable for the unusally low value of the Antoine constant C, its value being 183 instead of the usual 220-240. Paper

TABLE I

PHYSICAL PROPERTIES OF LACTYLLACTATES

Lactyllactate	n ²⁰ D	n ⁴⁰ D	d 204	d404	Viscosi 20°	ty, cps. 40°		ing point us pressu 1.0 mm.	resc	in water, g./100 g. (25°)
Methyl ^a	1.4314	1.4240	1.1609	1.1396	28.14	9.36	44	73	111	œ
Ethyl	1.4292	1.4212	1.1136	1.0929	17.09	6.77	48	77	116	æ
n-Propyl	1.4304	1.4222	1.0764	1.0567	14.20	6.09	54	85	124	2.2
n-Butyl ^e	1.4329	1.4247	1.0622	1.0425	17.06	7.04	63	94	134	0.92
n-Hexyl	1.4362	1.4282	1.0280	1.0094	21.64	8.55	79	111	153	.08
n-Octyl	1.4396	1.4317	1.0042	0.9866	26.57	10.45	97	131	176	< .01
s-Butyl	1.4295	1.4216	1.0528	1.0332	20.10	7.58	56	86	126	1.16
2-Octyl	1.4358		0.9894			• • •	89	122	164	< .01
Allyl ^b	1.4448	1.4366	1.1172	1.0971	18,60	7.45	58	88	128	4.2
2-Butoxyethyl	1.4390	1.4312	1.0760	1.0570	30.89	11.46	91	125	169	.38
2-(2-Butoxyethoxy)-										
eth y l	1.4433	1.4352	1.0726	1.0531	32.09	12.81	115	150	196	.31
Tetrahydrofurfuryl	1.4578		1.1691	• • • •			120 (0).3 mm.)	
2-Chloroethyl	1.4540	1.4458	1.2351	1.2152	60.20	18.31	94 (0) .3 mm.)	••••

^a Previously reported by Claborn (ref. 2). The properties he reported are in substantial agreement with ours. ^b Previously reported [Rehberg, Dixon and Fisher, J. Org. Chem., 15, 560 (1950)]. ^c Values read from a Cox chart.

TABLE II

ANALYSES OF LACTYLLACTATES"

	Saponi	fication	Analyses, %					
	equivalent		Carbon		Hydrogen		Mol. refraction	
Lactyllactate	Calcd.	Found	Calcd.	Found	Calcd.	Found	Caled.	Found 20°
n-Propyl	102.1	100.7	52.9	52.7	7.9	7.9	48.60	49.04
n-Hexyl	123.2	126.2	58.5	58.6	9.0	9.1	62.45	62.68
<i>n</i> -Octyl	137.2	138.4	61.3	61.2	9.6	9.7	71.69	71.94
s-Butyl	109.1	109.0	55.0	55.0	8.3	8.3	53.21	53.50
2-Octyl	137.2	142.4	61.3	61.9	9 .6	9.8	71.69	72.47
2-Butoxyethyl	131.2	130.4	54.9	54.8	8.5	8.6	64.09	64.11
2-(2-Butoxyethoxy)-ethyl	153.2	159.5	54.9	54.7	8.6	8.5	74.97	75.77
Tetrahydrofurfuryl	123.1	125.3	53.6	53.8	7.4	7.5	57.27	57.45
2-Chloroethyl	15.8°	15.8	42.8	42.9	5.8	5.9	48.84	29.25

^a The authors are indebted to C. O. Willits, C. L. Ogg, and their associates, of this Laboratory, for the analyses shown • Chlorine, %.

Because the acylation of lactyllactates with monocarboxylic³ and dicarboxylic⁴⁻⁶ acids yields esters useful as plasticizers, it was of interest to characterize more fully those lactyllactates which were available to us. These esters were obtained as byproducts in the preparation of simple lactates on a large laboratory scale, the conversion to lactyllac-

(1) Contribution from the Eastern Regional Research Laboratory, Philadelphia 18, Pennsylvania. One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture. Article not copyrighted.

(2) H. V. Claborn, U. S. Patent 2,371,281, March 13, 1945.

(3) E. M. Filachione, E. J. Costello, T. J. Dietz and C. H. Fisher. Bureau of Agricultural and Industrial Chemistry, U.S. Department of Agriculture, AIC-295, Feb. 1951 (Processed).

(4) C. E. Rehberg, M. B. Dixon, T. J. Dietz and C. H. Fisher, Ind. Eng. Chem., 42, 1409 (1950).

(5) C. E. Rehberg and M. B. Dixon, THIS JOURNAL, 72, 5757 (1950).

 (6) C. E. Rehberg, T. J. Dietz, P. E. Meiss and M. B. Dixon,
"Plasticizers from Lactic Acid. Lactate Esters Esterified with Dibasic Acids," submitted for publication in Ind. Eng. Chem.

graduated for C = 273 was converted to C = 183

by adding 90° to each temperature on the scale.⁷ Most of the esters in Table I are new compounds, and analytical data on those not previously described are shown in Table II.

(7) C. E. Rehberg, Ind. Eng. Chem., 42, 829 (1950).

EASTERN REGIONAL RESEARCH LABORATORY PHILADELPHIA, PENNA. **Received October 13, 1951**

Synthesis of Δ^1 -Allopregnene-17 α ,21-diol-3,11,20trione-21-acetate

BY EVELYN WILSON AND MAX TISHLER

The recent publication by St. Kaufmann and Pataki¹ in which they describe the synthesis of Δ^{1} allopregnene- 17α , 21-diol-3, 11, 20-trione-21-acetate (" Δ^{1} -allocortisone acetate") (II) has prompted us

(1) St. Kaufmann and J. Pataki, Experientia, 7, 260 (1951).